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Abstract

This report summarizes the research that was performed under AFOSR Contract
Number gasawassagdii titicd "Constraint-Based Scheduling in an Intelligent Logistics
Support System: An Artificial Intelligence Approach”. The goal of this research has been
the development of a computational theory of constraint-directed scheduling for
application to the generation and reactive management of job shop production schedules.
Methodologically, the development and investigation of elements of this theory have
involved the construction of a series of experimental knowledge-based systems for job
shop scheduling. Several versions of a system called ISIS were ceveloped. followed by
development of a successor system called OP1S. Each of these systems were tested using
simulated production data from an actual manufacturing environment. We provide an
overview of this work and highlight the major accomplishments.
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1. Introduction

In this report, we summarize the major accomplishments of the research parformed under AFOSR
Cantract Number F49623-82-K 0217, titled "Constraint-Based Scheduling in an Intefigent Logistics
Suppcert Systam: An Artificial Intelligence Approach™. The goal of this research has been the
development of Artificial Intelligence (Al) based theories and techniques that enable effective
computer generated scoluticns to real world scheduling prcblems. The central thesis upon which this
work is based is that solutions to realistic scheduling problems reguire a framewoerk that enables
consideration of all relevant scheduling constraints. and. further, that knowledge about the set of
relevant constraints can provide significant leverage in formulating and maintaining good solutions.
Thus, our research has sought to identify these sources of knowledge. and investigate their
representation and use as the basis for a constraint-directed scheduling methodology. The difficult
problem of job shop scheduling was chosen as the specific focus of the research, and it is the
progress made toward solution of this problem that is the subject of this report.

Given the emphasis on real-waorld problems, the construction of experimental knowledge-based
systems for job shop scheduling has served as the primary vehicle for investigating and
demonstrating our theories. Several versions of a system called 1SIS (Intelligent Scheduling and
information System) have been dzoveloped, and each has been tested in the context of the
Westinghcuse Turbine Comgponents Flant (WTCP) in Winston-Salem, NC using simulated plant data.
ISIS makes several important contributions relating to the representation and use of constraint
kncwledge, and demonstrates an initial heuristic search architenture for constraint-directed
scheduling. The final prototype, 1SIS-II, was transferred to Westinghouse Electric Corporation in
December, 1584, and its deveicpment into a production system is currently being explored under their
auspices. Experience with the ISIS tamily of systems and an increased focus on issues of reactive
scneduling has led. in turn, to the development of a successor system called OPIS (Opportunistic
Intelligent Scheduler). OPIS incorporates the essential ideas contained in ISIS but introduces a
dynamic, conflict-directed approach to decomposition and solution of the scheduling problem. The
OPIS scheduling architecture broadens the range of constraints that can be effectively attended to
and provides an integrated framework for predictive schedule generaticn (or expansion) and reactive

schedule maintenance.

Work with these protctype systems has provided much insight into the rale of constraints in
scheduling, and, in the remainder of this report, we review the major accomglichments of this
research. In Section 2, we discuss the nature of the job shop scheculing protiem. In Sections 3 and

4. the concepts and technigues resulting from cur work on the ISIS and OPiS scheduling systems
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respectively are presented. Finally, in Section 5, the contr.butions made by this reseurch are

summarized.

2.The Job Shop Scheduling Problem

Broadly speaking, the job shop scheduling problem concerns the allocation of a finite set of
resources to specific manufacturing operations over time such that the orders for parts received by
the factcry are produced in a timely and cost-effective fashion. The production of a given order
typically involves the execution of a sequencea cf operations, each of which possesses a specific and,
for the most part, distinct set of resource requirements. Thus, in more detail, the scheduling problem

consists of

e the determination of an appropriate sequence of operations, or process routing, for each
order, and

o the assignment of required resources and time intervals to the operations selected.

To some extent, these two aspects of the problem are separat!e and, historically, this has heen the
case in most manufacturing organizations. Process routing selection is viewed as a planning task
that is carried out during part design, and the ailocation of resources to particular orders over time is
viewed as the role of the sc'heduler. In actuality, however, there i3 3 much greater intarplay between
these seemingly distinct functions. There are often severa! ways in which a given part can be
produced (e.g., alternative machines and/or procduction processes may te utilized), and, while a
particular routing might be designated as preferred, an a pricri cecmmitment to it ignores the dynamic
nature of the actual shop floor. The feasibility of a given operation depends on the availability of its
required resources, and, consequently, many process selection decisions cannot be intelligently
made without consideration of the current status of the shcp (e.g., current orcer mix, current

resource levels, etc.).

The problem is further complicated by the unpredictability inherent in shcp ogeration. Machines
break down, in-process crders f2il to pass intermediate guahty ccntrol ingpections. engineering
changes are introduced, operators call in sick, and so on, all of which quickly force changes to
previously planned activities. As uncertainty in the performance cf activities on the shop floor
increases, the usefulness of precise schedules decreases. The precision of schedules prcduced by a
scheduler must be determined by the uncertainty of the infarmation used in making the decisions. so

as to facilitate schedule revision over time has this uncertainty is reduced. Thus, we can identfy two

1 .

Sactions 4 3 and 4 4 Je<cribe rescarch that was funded by a sucplemental grant to the above mentioned contract provided
by the Electrorics and Matenal Scrences Cepartment of the Ar Force. and is included in this report tor completeness in the
presentation of results.
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general goals in approaching the job shop scheduling problem:

e an ability to effectively predict shop behavior through the generaticn of schedules that
accurately refiect the full detal of the environment and the stated objective; ot the
organization, and

e an ahility to reactiveiy revise and maintain the schedule in response to changing shop
conditicns.

These activities are not viewed as distinct, but rather it is felt that the same types of knowledge and
methods are relevant to both. From a system engineering perspective, hawever, it is important to
provide a system crganizaticn with the flexibility to selectively focus on specific aspects of the current

schedule.

The job shop scheduling problem, in many idealized forms, is known to be
NP-hard. [Garey&Johnson 73] The situation in real world scheduling environments is considerabiy
mora complex. Much of the complexity stems from the need to attend to a large and diverse set of
cbjectives, requirements. and preferences that originate from many different sources in the plant,
These scheduling influences are often in direct conflict with one another, wherein lies the crux of the
prcblem. The production schedule must reflect a satisfactory compromise with respect to these

cempeting influences.

2.1, Scheduling Constraints
We can partition the range of factors that infiuence job sitop scheduling decisions into twe broad
classes of constraints:
e schedulirg restrictions that serve to delineate the space of possihitties in ceveloping a
schedule, and
o scheduling grelarences that provide a basis for differertiaticn amengst possible choices.
This distinction is useful to make at the outset because existing computar based scheduling systems
typically give mited attention to both. and each offers distinct opportunities for improving the quality

of the schedules generated.

Scheduling restrictions constrain the alternatives that may te cons:dered in selecung and crcéernng
operaticns, binding resources to cgeratons. and designaung tempceral intervals durng which

selected operations are to tare placz  Ccllectively. they serve to defire the spacs of 2gmissible

schedules that the scheduier must search Scheduling reztnctionsinclude:

e causal restrictions - There are typically precedence constraints asscciated with the
operations that must be perfarmed to produce a gwven part. restriching the manner in
which grders tor that p:art can be routed through the job shop. A precedence constramnt
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on an operation states that ancther operaticn must be performed befcre (or aitsr) it
These causal relationships between operations are further qualified by intar-operation
travel times, transfer quantity sizes (1e. the portion ¢f tha order that must ta completed
before any suvseguent gperatons can be imaated), maximum ailowan!e hines between
oparalions, etc. In addition, each ndivigual operation passosses a well defined set of
resource requirements which must be saushied for specific periods of time either before
cr during the execution of the operauun. For axample. a milling eperaticn might require
the possession of a miling rnachine, an operator with the necessary skills, specific tools
and fixtures. an appropriate NC tape, etc.

e cnysical constrairts - Each machine in a job shop has specific capabilities that restrict
the types of operations that can be perfermed on it. For example. the size of a machine's
work bed may prohibit its use for operations ¢n a particular class of parts. Likewise, each
machine has particular oporating characteristics (€.9., cutting speed, setup procedures)
which limit the amount of work that can be performed over a certain period of time.
Generally speaking. physical constraints define the functional limitations of specific
resources in the shop.

e resource unavailability - There are also dynamic restrictions on the availability of
resources that limit the scheduling alternatives available. Here we are speaxing of events
such as machine breakdowns that cccur asynchronously and are outside of the control of
the scheduler.

An understanding of the full range of scheruling aiternatives is essential to the development of a
realistic model of the job thop environment. The simplifications introduced in most existing ccmputer.
tased scheduling syslems (2.g.. tha designation of a single routing for cach part) reduce the flexibility
with witich the system can respend (o difisrent scheduling problems which results in a divergence of
the schedules generatad from ke actual real world situation. At the same time, however, any attempt
to embrace the full complexity of ths environment requires the ability to explicitly represent and

reason with the impcsad scheduling restrictions during the generation of candidate schedules.

In many problem domains addressed within the field of artficial intelligenca (Al), the restrictions
imposed by the problem censtrain the set of admissible soluticns to the extent that least commitment
and constraint gropagation technigues are sufficient to converga to an acceptable result [Stefik
81, Sussman&Stzeele 80, Walitz 73].  This is not the case in the job chop scheduling dcman.
Adherence to the scheduling restrictions dentified above stil leaves the problem severely
underconstrained. and knowladge of various prafarential concerns must be cons:dered to focus the

scheciuler toward good sclutions, These scheduling preferences fall into several categories:

e orqamizational-qoals - All manufactuning facilities are driven by a set of organizationai
goals. These goais rafiect gichal concarns and cbiectivas with respect to the cperation
of the factory. and imply general criternia against which prospective scheaules can be
comprared. Crqanizaticnal goals are estabhshed along saveral distinct performance
dimensions. For example,




o meeting due dates - A major concern of a factory is meeting the customer due
dates that are establiched as corders are received. The lateness of an order affects
customer satisfaction and the likelihocd of future business.

e minimizing work-in-process time - Work-in-process (WIP) inventory represents a
substantial investment in raw materials ancd added value. Since these costs are not
recovereble until delivery of the final product, minimizing ‘WIP time is an important
goal.

o maximizing resource utilization - Maximizing the amount of time that critical
machines in the shop are actually operating (as opposcd to being prepared for
operation ¢r standing idle waiting for parts) can greatly increase the overail
throughput of the plant. Also, there are tygically fixed costs associated with
maintaining and operating the machines in a factory which can be minimized if
resources are usad efficiently.

o

maintaining shop stability - The concern here is cne of minimizing the amount of
disruption to shop operations caused by revisions to the schedule. Last minute
changes to the schedule can lead to increased periods of machine idle time as the
preparation (cr machine setup) performed in anticipation of the previously
scheduled operations is undone and preparation for the newly scheduled
operations is carried out.

The above performance concerns can all be viewed as approximating the overall concern
cf the orgamization: a desire 1o maxke scheculing decisions that maximize profits. They
are addressed as part of the organizatcinzt planming process and lead to the
establishment of specific operating expectations. For example, production levels are
designatad for various arzas in the plant. a forocast of the numier of work shifts that will
te run in each arca is made, and prelinunary resourcs mamntendance schedules are
developed. These preferences all influence the shoo schecdule that is subsequently
developed.

operational preferences - These constraints express preferred choices amongst
alternatives at the level of individual scheduling decisions (i.e . the selection of specific
cperations, resources, and time intervals), and reflact the heuristic knowledge present in
a gr/en scheduling environment.  In many cases. these preferences provide a tactical
bas's for accomplishing specific global cbjectivas. For exampia, an ability to effectively
exploit order seguencing preferences to mimimize the amount of time spent setting
machines up for cperations coninbutes directly to maximizing r2source utiization. In
other cases, however. such knowledge reflects an understanding of the operational
characteristics of the plant that cannct te captured in predictive estimatas of how well
varnous scheduling obvactives have been met. For exampie. 3 decision to aveid a
particular machine when pess.ble, based cn knowledge of its cusceptbility to
breakdowns. cannct be croperiy 253assed until the schedule 1s actually executed on the
shop floor. Such decisiors may in fuct have detrimantat effects with respect to precictive
measures of schodule guality. [t 's unportant, theretore. to give proper attention to both
types of concerns.

e resource unavailabinty - in contrast 1o the resource unavailability restrictions mentioned
above. rcsource unavalabiity preferences reler 1o censtraints that are introduced by the
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scheduler. As resources are allocated to specific cperations dunng generaticn or
revision of the schedule, constraints declaring the resources unavailable during the
allocated time pericds must be generated. Such decisions must te viewed as
preferences, since they may later be retracted 1in the face of other overrding facturs (2.3,
the receipt of a high prornity order).

it is ctear from the above discussion that an effective solution to the real world jcb shop scheduling

problem requires an ability to reason intelligently with an amalgam of civerse constraints. Cur initial

not developed in any uniferm fashicn, but rathar through an iterative procass of distributing a
proposed schedule to various departraents in the plant, colilecting add:itional constraints, and
attempting to alter the schedule accorcingly. However, whiie it was clear that scheduling decisicns
were based on the full range of factors identified above, the lack of a methodology for balancing these
concerns consistently led to generation of schedules that resulted in less than satisfactory factory

performance. The schedulers were simply overburdened by the complexity of the task.

2.2. Reiated Research

Scheduling research to date has had relatively little impact on the real world job shop scheduling
probiem. Operations Managzament (OM) research has long stucied the scheduling problem, but has
cdaone so from twao, rather restrictive persgectives. The first, centered around a desire to obtain optimal
results, has sought to formulate mathematical mode!s of the prcblem that are tractable by linear
pregramming techniques. This has focused atiention toward sinphfied scheduling problems (e.g. the
single machine case) which, unfortunately, have little in common with real world factory
environments. A second branch of OM research has been concerned with the development of priority
decision rules to provide a heuristic basis for order seguencing. These rules, while usgful in making
Iccal dispatching decisions. are typically responsive to scec:fic types of concarns (e.g. meeting due
dates) and ignore all others. This restricted emphasis limits thair effectiveness .n mere global (i.e.

plant wide) decision-making contexts.

In recent years, Al research in planning has alsc turned attenticn to schecuiinj ssues. Recognizing
the limi. .tions of reasoning with implicit notions of timz, several rescarchers have focused on
extending existing planning paradigms to include the asaignment of time intzrvals tc actvities. Vere
[Vere 81] describes a technique used to schedule activities abcard a spaczcraft which asscciates
time windows and durations with the various activities in the plan, and prenagiates refinements 1o this
temporai information as the plan crystalizes. A simiar approach 1s acopted in [Fukumorn 20] in

generating train schedules. Others have sought to reformulate the planning grocess vathin 2n 2xplicit

temporal framework [Atlen 81, Allen&Koomen 83, McDermatt 82]. Expansion of the glanning problem
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Z::E to explicitly address temporal concerns has also necessitated the establishment of critenia for
differentiating betwean allernative plans.  Overall plan duration has been the most common
_ cons:deraticn in Al scheduling s, stems although activity cost estunates are alsc includ2d i [Daniel
:-'j:: 84] and the scheduling framewsrk descnibed in (Miller 83] proposaes the usa of special purpese critics
Z::Ej to detect specific undesirable charactenstics (e.g. deadline violations). In relaung these efforts to the
:::: factory scheduhing problem, the chief point of divergence is the absence of conflicting constraints.
' This 1s due in large part to the emphasis on planning the activities of a singie agent, and the
';:: conseguential fack of emphasis on efficient atlocation of shared resources (i.e. resource availability
:'._\: 1S the scb: concern). One exception is the NUDGE system [Goldstein&Roberts 77], which
:::; compromises between the conflicting preferences of distinct individuals in producing a schedule for a
:_ given individual's weekly activities and appointments.
=
- 3. Investigations with ISIS
:. Recognizing that the real world factory scheduling problem is a complex constraint-directed
. activity, development of the I1SIS job shop scheduling system was undertaken as a means of exploring
-'.':;‘ the roie of constraint knowledga in generating and maintaining good production schedules. In doing
\ 30. this work has investigated issues relating to
1::'. e repEs2nlng tha kitowledge about the factory environment and its constraints nccessary
{ to suppcrtintsiligent scheduling,
oy
\ﬁ e integrating constraint knowlaecge into the scheduling process, so as to effectively limit the
‘:.j generaticn anc focus the seleclion of alternative scheduling decisions,
.:4
-.* e relaxing constraints when conflict occurs, and
'_::f' e using constraint knowledge to recognize and diagnose preblems in the schedule,
- In this sacticn we review the research contributions that have resuited from work with 1SIS. In
""' Sections 3.1 and 3 2 we address xnewledga representation issues, outlining a semantics for modeling
fj.: the factory envircnment and its consiraints. Mechanisms for intercrating the factory mode! and the
:.'-Ej constraint representation to g2nerat2 and evaluate alternative sats of scheculing decisions are
;::: pra2sentad in Section 3.3. In Szazticn 3.4, a2 hierarchical. constraint diracted schedulirg architecture
'.-' that utthzes thase mechanioms s dascnbed. Sactuon 3.5 discusses '3su=s of user intzraction with the
v system.  Finally, in Secticn 3.6, 2xpernimental resuits ootamned with 1SiS are summarized. Cther
K -'j sccounts of this werk may b2 found in[Fox 82. Fox 83a, Fox 8&Cb. Fox &3, Fox £ Fov83mith |

83a. Fox&Smith 84b, Smith 33, Smith 86a).




3.1. Modeling the Factory

One fact evident from the discussion of Section 2 is that effective scheduling decisions must reflect
knowledge and constraints relating to all facets of the manufactining enterprise. Thus, a fundamental
prerequisite to scheduling is a an accurate and complete model of the production environment. The
model is necessary to provice a framework lor representing and organizing constraint knowledge (i.e.
building the site specific knowledge base), and to impose structure that can be exploited in the
development and maintenance of production schedules. However, there is a larger issue here relating
to use of the mcdel in integrating the production scheduling activity with other activities of the
rmanufacturing organization. Our work on modeling the factory has sought to address this larger
issue, and, while concentrating on the development of a representaticn to support constraint-directed
scheduling, we have grounded this representation with a basic semantics that is applicable for

modeling all aspects of the manufacturing organization.

In addressing issues of knowledge representation, we have drawn on fraime-based representation
techniques. In particular, our model of the factory environment and its constraints has been
constructed using the Schema Representation Language (SRL) [Wright&Fox 83].2 SRL is a frame-
based language which enccdes concepts as schemata. A schemais a cotlection of slots and vaiﬁes.
Fach schema, slot, and/or value may have meta-information aitached to it. In addition to attribute
kncwledgs, slots define inter-schema relations, along which slots and values may be inherited. The
inhcriiance semantics of a relation are ucer definable. Figure 3-1 illustrates the basic SRL construct

in defining an operation schema.

{{ operation
{1s-A: activity

NEXT-OPERATION: "operations which directly follow this operation”
PREVIOUS-OPERATION: "operations which directly precede this operation"
SURB-OPERATIONS: "operations that refine this operation at a lower level of precision”
RESOURCE-REGUIREMENTS: "resources that must be allocated to the operation”
ENABLED-8Y: “state which enables this action”
CAUSES: "state resulting from execution of this action”
DURATION: "time of this action" } }}

Figure 3-1: Operation Schema

In this case, the description states that an operation 15-A type of activity (and, hence. inherits the

2The current OPIS system (see Section 4) is implemented in Knowledgecralt, 8 commercially available descendant of SRL.




4 -:.,..'..

A A B

2 &

ol
»

€Y a %
Ry

~
3

i PR ANL N

a2 ati s ol i el ailh st et i add g

attributive knowledge associated with the activity definition). This view of an operation is further

refined to include the attributes (i.e. relaticns/slots) NEXT-OPEQATION, PREVIOUS-OPEHATION, etC.

To accornglish the represcntational goal stated abeve, a layered appreoach to daveioping the factory
model has been adopted. Building on the basic semantics provided by SRL itself, a worlg model layer
of representation is first introduced. This layer concerns the definition of general structural and
-2lational primitives for modeling manufacturing organizations and their activities. The descriptions
provided define the basic concepts cf states, objects and activities, along with a set cf temporal and
causal relations for describing their interactions. This layer provides an epistemological framework

for defining domain specific mcdels.

The domain fayer of the representation refines the general semantic primitives introduced in the
world model layer into concepts germane to the schaduling environment. For example, in specifying
the set of process routings associated with a particular product, manufacturing operations are
defined as activities, and precedence constraints are composed from basic temporal and causal
relations. The resources required by specific operations are expressed as cbjects, with their
allocation represented as a collaction of possession states spanning particular intervals of time. The
dcmain-specific definitions intreduced in this layer of the representation, encompassing concepts
such as resources, products, product demands, operations, and materials, are themsclves
specialized according to important functional and structural characteristics. The resulting prototype
descriptions precisely define the kncwledge requirements for representing the specitic entities in a

particular production environment.

Within an "instantiated™ factory model, the factory is represented at multiple fevels of abstraction.
Cztailed operations are aggregated into abstract operations. Similarly, machines are aggregated by
furction into work areas. Thus. the factory moca! provides the scheduling system with multiple views
cf the scneduling problem, enapling the system to conslruct and reason about schedules at varying

levels of precision.

Tc a large extent, the scheduling restrictions present in the factory environment, and hence the set
of alternati.es relevant to cpecific scheduling decisions, are directly reflected in the resulting mcdel.
This provides a structural framework for organizing the preferential concarns that influence various
choices. This knowiedys is encoded within a general consiraint representation (10 be discussed
below in Section 3.2) and specific instances of constraints are attached direclly to the

relations/attributes in the model Lhat they constrain. This is illustrated in Figure 3-2, which graphically

displays a portion of a factory model centered around the description of a particulur machining
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!": 3.2. Constraint Ropresaentation
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| § Gwen the central ra2 of corsiraints in determiming a job shop schadule, & major thrust of our

b - .

:-ﬁ researcn has canteraa on et o~g ard characienzing the constraint knowledge required to support
::3 an atfective corsirnnt Jiractes :arch A constraint 1s viewed not simpiy as a restriction over a set of
-~ chowcas, but ratker 15 tme a5 atien of a vanety of xnowledge concerning its use. Cong:der the
9
& impositon of A 2oe 2are o s momplest torm this constrain? wou'd be represented by a date alone,

’:3 the mphcalcn Lang tha! the cb ce shpged on that date  [n actuahty howaver, due dates may not

.,-'_ Lrays b2 omat and such 3 tLeerantatan provicdes no information as 1o how to proceed in these

10 situahions  An agproprale epiesontation must include the additional information about the due date

- that may be necessary in constructing a satstactory schedule. For example:
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e what alternative dates are satisfactory if the original cannot be met?

e what preferences exist for these aiternative dates?

e who specified the due date? when? and why?

¢ how is the satisfaction of the due date related to other constraints such as costs?

e does the satisfaction of the due date constraint positively or negatively affect the
satisfaction of other constraints?

e under what circumstances should the due date constraint be considered?

o if there are two or more due date constraints specified for an order, which should be
used?

Let us examine the representational issues raised by these examples, and, correspondingly, the
salient features of the (SIS constraint representation. Complete details of the constraint

representation may be found in [Fox 82, Fox 83a, Smith 83].

3.2.1. Alternatives and Preference Relationships

Cne of the central issues that must be addressed by the constraint representation is that of conflict.
Consider capacity and due date constraints. The former may establish limits on the production
capabilities of particular work areas of the piant while the latter may require shipping the order in a
short period of time. Current circumstances in the shop (e.g. current shop load) may be sucn that
accomplishment of the latter is only possible if extra work shifts are introduced, thereby causing a
conflict with the former. In short, it may not be possible to satisfy both constraints, in which case one
or both must be relaxed. This is impljcitly accomplished in mathematical programming and decision
theory bv means of utility functions and the specifications of relaxation through bounds on a
variable's value. In Al, bounds on a variable are usually specified by predicates [Stefik 81, Engleman

80] or choice sets {SussmanSteele 80, Waltz 75].

An ability to relax a specific constraint requires knowledge of two sorts: knowledge of potential
alternatives, and knowledge cf the preference relationships that exist among these alternatives.
Given the diversity in the types of constraints present in the job shop scheduling domain,
tormalization of this knowiedge is accomplished by defining a taxonomy of constraint types.
Constraints may be expressed either as predicates or choice sets. Choice constraints are further
specialized to distinguish constraints that range over discrete or continuous choice sets. Each
constraint type provides a scecific framework for specifying alternatives and the preference
relationships that exist amang them. Expressian of preterence relationships is accomglished through
the association of a utility value to each alternative, intuilively reflecting the degree to which each

alternative satisfies the constraint. Utility values are defined to range from zero to one, with zero
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interpreted as complete dissatisfaction and one interpreted as complete satisfaction.

As might be expectad, the association of utilities to alternatives varies acccerding to constraint type,
and specific methods for deriving utility values are defined for cach constraint type. In many cases. a
constraint expresses preference relationships over a set of choices that are explicitly defined in the
model. For example, operations are defined to take place in certain work areas of the factory, and
machine preferences promote specific choices from the sets of machines in those areas.

Specification of the preference relationships in these cases entails an association of specific utility
values to each of the defined alternatives.

Many organizational goals, on the other hand, express preferences over a continuous and often
infinite range of possible values. A due date constraint, for example, must associate a dégree of
satisfaction with each point along the time line. Constraints of this nature require an implicit maphing ;
of degree of satisfaction to possible alternatives. This is accomplished by defining a character_istic
function which, when evaluated with respect to a particular alternative, yields a specific utitity -value. ;
This approach to specifying the preference relationships amongst alternative relaxationé is ndt unlike
the techniques employed in mathematical programming, and, in fact, allows advantage to be takén of
OM heuristic priority rules that emphasize specific organizational goals.

3.2.2. Constraint Elasticity

A source of knowledge that affects decisions concerning whether or not given a constraint should
be relaxed is its elasticity. The elasticity of a constraint is a measure relating to how "easy" it is to
relax. Constraints vary in scope (i.e. the range of scheduling decisions that they constrain), and
consequently vary with respect to the amount of disruption to the schedule that can be expected to
result from a decision to relax the constraint, For example, a decision to relax the shift constraint
associated with a particular machine (e.g. add a 2nd shift for some interval of time) affects all
allocation decisions involving that resource, whereas a decision to relax (or ignore) a machine
preference constraint in scheduling a particular operation only affects that particular scheduling
decision. Pragmatically, this variance in the scope of different constraints translates to variance in
the computational effort required to consider their relaxation. Exploration of various work shift
assignments requires much more search effort than exploration that assumes preferred shift

assignments. A constraint's elasticity provides guidance in delermining whether the constraint shouid

be considered relaxable and non-negotiable during the search procass.
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3.2.3. Constraint Importance

The relative influence to be exerted by a given constraint, i.e. its importance, is another type of
knowledge that must enter into constraint relaxation decisions. Not all constraints are of equal
importance; some are more important to satisfy than others. Specification of importance
relatior_lships within the constraint representation distinguishes between absolute and relative
importance knowledge. Absolute importance knowledge relates to the static importance relationships
that exist among constraints of a given type (e.g. machine preference constraints) and is specified by
associating an importance metric (or weight) with each defined constraint. The importance
relationships among different types of constraints are typicaily more dynamic in nature. For example,
satisfying a due date constraint is likely to be a much mare imhortant concern than satisfying the set
of relevant resource preferences in the context of4a high priority order, while the opposite rﬁight be
true in the case of an order generated to build mventory Such relationships are estabhshed through
the specification of scheduling pol:c:es Scheduhng policies define nmportance specmcatnons whuch
partmon constraint types into dxstmct importance classes and associate, with each partmon,
fractlon of tne total |mportance to be dlstnbuted amongst the constraints belonging to the partltiod.
During interpretation of a scheduhng pohcy, thls fraction is drstnbuted in propomon to the absolute -

|mportance measures associated with the constramts defmed to be in that importance class. e

-

3.2.4. Constraint Relevance

To provide a basis for determining which constramts should impact a given scheduling decns:on the

constraint representation aiso addresses knowledge relating to constraint relevance, the condmons
under which a constramt should be applied. Given that constraints are attached directly to the

schemata, slots, and/ or values that they constrain in the tactory model (see Sectlon 3.1), constraint
relevance can be determined to a large degree by the proximity of constraints to the portion of the
model currently under consideration. For example, a given scheduling decision designates specific
entities in the model (e.g. a specific order, a specific operation, a specific machine, etc.) which can be
examined to collect all potentially relevant constraints. Of course there may be further conditions on
the applicability of the constraints that are collected in this matter. For example, due date and WIP
constramts are only relevant to decisions that make commitments with respect to the execution time
of operations. Such constramt spec:hc applicability conditions are expressed by associating a

specific procedural test, termed the context, with each constraint specification.

There are situations in which problems arise if the applicability of constraints is based solely on their

context sensitivity to the current situation. First, many constraints tend to vary over time. The number

-

sanemativety referred to as scheduling goals In [Fox 83a, FoxaSmith 84a).



.
": of shifts, for example, fluctuates according to production levels set in the plant. Consequently,
Nj different variants of the same constraint type may be applicable during different periods of time.
_ Within the constraint representation these situations are handled by asscciating a temporal scope
',:: with each variant, organizing the collection of variants according to the temporal relationships among
‘:Z them, and providing a resolution mechanism that exploits the organization. A second problem
:w: involves inconsistencies that might arise with respect to a given constraint type. It is possible for
‘ different variants of the same constraint type to be created and attached to the same object in the
?'_: model. For example, both the material and marketing departments may place different and conflicting
‘3 due date constraints on the same order. In this case, a first step has been taken in exploiting an
b authority model of the organization to resolve such inconsistencies.
tf; 3.2.5. Constraint Interdependencies _ .
" "".i _ Anather important aspect of the conétraint representation concerns the interdependencies amongst
v‘ ZE constraints. Constraints do not exist independently of one another, but rather the satisfaction of~a
f given constraint will typically have a positive or negative effect on the ability to satisfy qther o
:-.:-. constraints. For example, removing a machine's second shift may decrease costs but may alsp céuse
':::: an order to miss its due date. These interdependencies are expressed as relations within the
) constraint representation, with associated sensitivity and direction measures indicating the extent
. - and direction of the interaction. Knowledge of these interacticns can support diagnosis of the causes
f:j of unsatisfactory final solutions proposed by the system, and suggest relaxations to related
g, -, constraints which may yield better results.

3.2.6. An Example

An example of a constraint within the I1SIS model is a due-date-constraint (Figure 3-3). It

.

" constrains the range (i.e. value) that a slot may have. In particular, it constrains the DUE-DATE slot
,\ (relation) associated with an order schema. The predicate contained in the CONTEXT slot designates
}: that the constraint is applicable to any decision regarding the time of an operation, and the
Q:. INTERACTS-WITH relation identifies its dependency on shift constraint satisfaction decisions. The
":::‘ specific set of alternative values (or relaxations) designated by this constraint is described by the
~

._-} due-date-constraint-spec schema (Figure 3-4), which is defined as a type of
,,.~~' . .

Ny continuous-choice-spec. A continuous choice spec restricts the value of a siot to a particular
-_-f domain, in this case the domain of dates, and specifies a piece-wise linear utility function over this
-:.':: domain. This function provides the basis for determining the utility of any particu'ar value chosen (via
:-_;‘ interpolation).

{.-
- The fo-due-date-constraint schema, depicted in Figure 3-5, defines the due date constraint
o
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{{ due-date-constraint
{1s-a range-constraint
IMPORTANCE:
CONTEXT: time-commitment-madep
INTERACTS-WITH: shift-constraint
direction: negative
DOMAIN:
range: (type 1S-A order)
RELATION: due-date
CONSTRAINED-BY:

range: {type 1S-A due-date-constraint-spec) }
PRIORITY-CLASS: }}

Figure 3-3: due-date-constraint schema -

{{ due-date-constraint-spec
{15-A continuous-choice-spec
DOMAIN: dates
PIECE-WISE-LINEAR-UTILITY;
EVALUATOR: interpoiate } }}

Figure 3-4: due-date-constraint-spec schema

associated with "forced outage” orders. The utility function is specified by <shipping-lateness utility>
pairs, and states that the utility of a particular choice will be

e 1 if the due date chosen is on or before the requested due date,

e linearly decreasing from 1 to 0.1 if the due date chosen is between 0 and 7 days late. and

e 0.1 if the due date chosen is more than 7 days late.

3.3. Interpreting Constraints to Generate and Evaluate Alternatives

We have already observed that exploration of aiternatives (i.e. search) is an integral part of

generating constraint-satisfying schedules. Indeed, the constraint representation summarized in the
previous section emphasizes the knowledge required to support an cffective constraint directed
search. In this section, we describe basic mechanisms for interpreting the constraint representation
to generate and evaluate search alternatives. Later, in Section 3.4, we examine how these
mechanisms are exploited within the SIS search architecture.
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- {{to-due-date-constraint
_';: {is-a: due-date-constraint
S CONSTRAINED-BY: {{INSTANCE due-date-constraint-spec
N PIECE-WISE LINEAR-UTILITY: ((0 1.0) (7 0.1)) }} }
1 PRIORITY-CLASS: forced-outage }}
\
o Figure 3-5: fo-due-date-constraint schema
-
"
-
- For the most part, the alternatives we are speaking of are partial solutions - subsets of the total set
o of scheduling decisions that comprise the factory schedule. Candidate partial solutions under
,:-_' " consideration might, for example, represent aiternative sets of decisions that could be taken with
'.':' respect to a particular order. This emphasis on the expioration of alternative partial solutions is due
.‘ ' to the combinatorics of the underlying search space, which makes it necessary to focus incrementally
. on specific aspects of the schedule and make commitments prior to seeing a complete schedule. W__e
{ will use the terms hypothesis, solution component, and partial schedule interchangeably to refer toa
; candidate partial solution. ' '
3.3.1. Constraint Resolfution and Constraint-Based Evaluation
y Central to an ability to exnloit canstraint knowledge in the evaluation of alternatives is a means for
:- constraint resolution: the determination of precisely which constraints should impact the scheduling
~-
W decision {or decisions) under consideration, Let us assume (tor the moment) the case where a
P
- hypothesis consists of a single scheduling decision. In this case, knowledge of where constraints are
o
:.' placed in the factory model (see Section 3.1) can be used in conjunction with the relevance
~-
o knowledge that is associated with individual constraints (see Section 3.2) to define a general
o resolution mechanism:
o _ e
e The appropriate siots of the schemata representing each entity identitied in the
- prospective scheduling decision are scanned to collect all potentially relevant
s constraints.
. o this set is then filtered through applicaticn of constraint-specific applicability conditions
and resolution mechanisms to yield the final set of constraints.
‘. »
e
O Evtending the constraint resolution mechanism to hancdle hypotheses representing a set of
:g scheduling decisions is only slightly more complex. There is one additional concern: In applying the
) .
above resolution mechanism to each decision represented by the hypothesis we may retrieve the
I« ' same constraint more than once. For example, if the hypothesis proposes execution times fcr more
o
e
."_'i'
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than one operation for a given order, then the order’s due date constraint will be resolved to be

«aa
L]
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»
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relevant to both decisions. However, the constraint should only be applied once. This is handled by
classifying constraints into two categarnes: invariant and transient. lovariant constraints are always
retained, whereas only the mast appropriate variant of a transient sonstraint is retained. In the case of
the due date constraint (which involves a prediction of when the order will finish), the appropriate
variant would be the one asscciated with the operation that is furthest downstream in the order’s

preduction ptan.‘

Through the use of assigned utilities that express a given constraint's preferences relative to
possible choices (or relaxations), and knowledge of the importance relationships that exist among
constraints, a mechanism for evaluating alternative hypotheses is defined. The rating scheme

intuitively reflects how well a given hypothesis satisfies the relevant constraints. This is acc'omplished
as follows:

¢ All constraints relevant to the hypothesis (as determined by the constraint resolution - -
mechanism described atove) are applied. Each participating constraint imparts a utlhty in
the range from zero to one reflecting how well it is satisfied by the hypothe5|s

e The appropriate scheduling policy is applied to determine the influence (or weught) that
each constraint should be given in the evaluation. As mentioned in Section 3.2, the-~
scheduling policy defines a partition of constraint types according to importance classes,
and ascribes a specific percentage of importance to each partition. The percentage of
importance allocated to each importance class is districuted amongst the ronstraints
belonging to that partition in proportion to the absolute importance measures associated
with each constraint. This results in the assignment of a weight to each participating
constraint, where each weight is a value between zero and one and the total set of
weights sums to one.

¢ The rating assigned to the hypothesis is the weighted sum of the utilities assigned by the
participating constraints.

This evaluation scheme provides a framawork for selective evaluation of the evolving solution at
different levels of aggregation. For example, a subtask concerned with the generation of a particular

solution component (e.g. decisions relating to a particular orcer) can be driven by constraint

satisfaction assessments local to that portion of the solution. As sets of scheduling decisions are

4!! assumptions can be made about the manner in which hypotheses are generated. then the above procedure for constrant
resolution can be oplimzed without 168 of generalily. For exampia, 1515 generates hypatheces in an incremental fashion (i.e.
at each step of the search, one or mcre existing hypotheses are exterded to include an additional scheduling decision).
Because of this, constraint resolulion can be, and is, implemented as an incremental process of determining the constraints
that are relevant to the hypothesis extension, and "merging” these constraints with those were determined to te relevant
during prior development of the hypothesis. Additronal advantage s laken from the fact that ISIS works erther forward or
backward through an order’s groduction plan when considering alternative schedules. Given this fact. the mast recent varnant
of a transient constraint 13 always the one that should be retained.
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combined to form more encompassing partial solutions (e.g. as schedules for individual orders are

'. "- l‘l

integrated into a shop schedule), corresponding aggregate measures of constraint satisfaction can
be produced by agpropriately merging previously collected sets of constraints. The scheme also

provides a means for measuring the extent to which specific influences have been attended to at

e e
PR

different levels of aggregation. With respect to meeting deadlines, for example, measures reflecting

o
s

¢ s
.

"how well order 10's due date constraint is satisfied”, "how well the end time constraints in the

milling work-area are satisfied”, "how well the due date constraints of orders of priority class x are

—
l.l
-~

satisfied”, are all obtainable by focusing on different cross-sections of the previously determined set

e et

of relevant constraints. These distinct levels of evaluation can all provide useful information upon
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which to base search control decisions.
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3.3.2. Constraint-Based Generation and Constraint Relaxation
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.
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The restrictions present in the factory mode! can be interpreted as a set of basic search operators

and, hence, provide a basis for generating alternative hypotheses. For example, a resource

.1,." AL

requirement canstraint stating that the P1-root-grinding must take place in the 208-rooting-machine-

area (see Figure 3-2) provides a basis for generating 3 competing hypotheses: one that represents the

selection of each machine residing in that work area of the plant to perform the P1-rcot-grinding

operation. Similarly, the operation precedence constraints depicted in Figure 3-2 that specify P1-

L T
R
G

-

milling-process! and P1-milling-process2 as alternative successors to the P1l.rocting-operation

a s, 4,

provide a basis for extending each of these three hypotheses in two different ways, each designating

the selection of a particular successor operation. Duration and capacity constraints provide the basis

n'
[l

Pl
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for extending hypotheses to include alternative operation execution times.

- Use of such search operators in an unconstrained fashion, however, results in a combinatorial
explosion of aiternatives, and knowledge must be exploited to limit the search. In some cases, the

basic search operators can be specialized by exploiting the preference constraints that influence the

>
' alternatives liwey generate. Going back to Figure 3-2 once more, suppos2 that the consiraint specified
:j-:'. by small-blade-milling-preference defines a strong preference fcr P1.milling-process1 (i.e. it has
::;': a high importance value) and that the order tor which scheduling decisions are being generated
concerns the production of small blades (i.e. the constrzint's condition of applicability evaluates to
® true). This knowledge can be used to restrict the generation of alternatives. in this case removing the
::-f P1.milling-process2 operation from consideration.
" In the absence of strong preferential guidance, the generation of alternatives can be constrained by
~': placing limits on the number of hypotheses that may be extended at any step of the search. The beam
o search employed by I1SIS (see Section 3.4 below) operates in this fashion, using the constraint-based
Y
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evaluation scheme described above to determine which hypotheses to retain and extend.
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This constraint-based hypothesis generation paradigm defines a generative constraint relaxation
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process. The application ¢t a given search operatcr generates alternative scheduling decisions, each
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of which specifies an alternative relaxation of the consiraint (or constraints) from which the search
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operator was derived. Furthermore, each alternative generated makes implicit relaxation decisions

-

with respect to all other constraints relevant to the scheduling decision. Thus, as the search
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proceeds, solutions which reiax varicus constraints to various degrees are considared.

ll.'
‘.

]
b "%

Cf course, to make generative relaxation feasible, it must operate in tandem with analytic constraint

relaxation processes. Given the size and complexity of the search space, it is necessary to make

explicit decisions that bound the dimensions of the search to be conducted (e.g. which set of
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scheduling decisions to consider next, which search operators to use). Similarly, the fact that the
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search is being heuristically restricted requires an ability to redirect the search (i.e. alter its

dimensions) upon reccgnition that the search has produced an unsatisfactory compromise. Each of

S
’

these search control decisions ultimately influences, in one way or another, the degree to which

various constraints will be relaxed. The extent to which this decision-making can be totally
o automated remains an open guestion, and within ISIS, many of these control decisions are predefined
: by the overall system architecture. At the same time, it has been possible to define rule-based
relaxation processes, driven in part by the constraint elasticity and interdependency knowledge
described in Section 3.2 and in part by characteristics of the constraint conflicts that must be

- resolved, that address some of these control issues. The ISIS architecture utilizes rule-based

O

components for initializing focal searches and diagnosing some specific constraint satisfaction

v

*
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failures (see Section 3.4.3 and [Fox 83a]). Within the OPIS. scheduling architecture (which actually

provides a more aporopriate framework far diagnostic processes), these ideas are extended to

-
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encompass strategic decisions relating to problem decomposition (see Section 4).

()

- 3.4. Hierarchical, Constraint-Directed Scheduling

The basic mechanisms described in the last section form the nucleus of the I1SIS approach to
"'::,' generating and maintaining joo shop schedules. Both these mechanisms and an overall framework

..,3 for applying them have evolved over the course of this research, resulting in several distinct versions

'J of 1ISIS. The initial ISIS search architecture employed these mechanisms in a strictly non-hierarchical

3 fashion. Experimentation with this version of the system pointed out a susceptibility to "horizon

, effect” problems, and additional levels of analysis were added in subsequent versions to combat
these problems. In this section we describe the operation of the final hierarchical version of ISIS, and

. compare its performance characteristics to the earlier, non-hierarchical version. See [Fox 86] far a
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retrospective look at the evolution of this search architecture.

In constructing a féb shop schedule, the ISIS search architecture assumes an “order-based”
scheduling perspective. By this we mean that an initial decomposition of the problem is performed
wherein the orders that require scheduling are pricritized. The shop schedule 1s then derived by
incrementally determining a schedule for each individual order. Thus, the complexity of the overall
scheduling problem is reduced by restricting system attention, at any point, to the decisions
surrounding a particular order. The generation of a given order’s schedule is cast as a hierarchical,
constraint-directed search. Different levels of the search operate with different abstractions of the
problem, each a function of the types of constraints that are considered at that level. Control
generally flows in a top down fashion, moving through successively more detailed levels of analysis.
This is illustrated in Figure 3-6. The following subsections summarize the major components of this
search architecture.

3.4.1. Problem Decomposition i

The order selection level of analysis constitutes the system’s global problem decomposition
strategy. It collects the set of orders that require scheduling (e.g. newly released orders, partiaily
scheduled orders, previously scheduled orders whose schedules have been affected by
unanticipated events and/or decisions imposed by the user), and assigns a priority to each. This
prioritization of the orders to be scheduled provides a high level, arder-by-order plan fer completing
the shop schedule. TThe ISIS search manager carries out this plan by selecting orders for scheduling
in priority order. The scheduling of a given order may disrupt existing schedules for lower priority
orders, in which case the affected lower priority orders are queued for rescheduling. The particular
prioritization schemes that have been tested presume a grouping of orders into distinct priority
classes, and base the order priority calculation on both priority class and the closeness of the

requested due date.

;" 3.4.2. Constructing an Order’s Schedule

\ Construction of the shop schedule proceeds by repeatedly selecting and scheduling the
t unscheduled order with the highest priority. We found that order-centered search in the presence of
E?." bottienecked resources resulted in a significant horizon effect. The need became obvious for a
[fj.'-' hierarchical search in which an abstracted version of the problem, focusing on critical resource
E capacity, was solved. Consequently, a capacity-centered level of analysis is first anplied to propagate
:?-:: the temporal consequences of the requested start and due dates assigned to the selected order. The
= result is a coarse schedule that reflects due date considerations in the context of the current shop
r load. Propagation is carried out by means of a dynamic programming analysis that elaborates the set
"y
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Figure 3-6: Successive refinement of an order’'s schedule within ISIS

of possible routings for the selected order, and associates an eariiest start time and latest tinish time
with each operation. This information is embodied in a set of preference constraints which serve to
influence the decisions that will be made during the subsequent detaiied resource analysis. If these
constraints are satisfied by the final schecuie produced, then the order will be completed within its

externally imposed ralease and due dates. They are cast as preference constraints, however, to
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enable compromise with respect to cther cenflicting concerns.

The deotailed resource anaiysis level considers the full range of restrictive and preferential
constraints that surround the production of the current order, and 1t is at this level thut the constraint.
based generation and evaluation mechanisms descrbed in Section 3.3 come into play. Again
operating over the set of possible routings, a heuristic search is performed that proceeds either
forward from the order's requested start date or backward from its requested due date. Alternative
schedules for the order are explcred incrementally - on 2ach iteration of the search *he current set of
candidate partial schedules is expanded by considering cre acdcitional scheculing dec:sion {e.g. the
selection of an operation to perform, the sefection of a resource for an operation. the selection of a
time interval for an operations). Using a beam search, only the n best partial schedules are retained
and extended at each iteration. Constraints are collected and applied as described in Section 3.3.1 to
assess how well each candidate satisfies relevant preferences and this provides the basis for pruning.
Upon completion of the search, a commitment is made to the highest rated hypothesis. Constraints
reflecting these decisions are posted to restrict the final determination of the order's schedule. The
inclusion of the operation time bound constraints from the capacity ievel has what we call a periscope
effect on the search. Their consideration in the focal evaluation of a partial schedule provides a look

ahead into the pessible consequences of the decisions.

The schedule produced during detailed rescurce analysis significantly refines the coarse schedule
generated at the capacity analysis level of the search. A specific process routing has been selected
for the order under consideration, resources have been selected for each operation in that routing,
and resource time bound constraints have been associated with each selected resource. Complete
specification of the order's schedule at this stage requires only the refinement of the imposed
resource time bounds. The resource assignment level of the search carries out this refinement,
leading to final aliocation decisions for each resource required in the order's schedule. Operating
within the time bounds imposed by detailed resource analvsis, allocation decisions are made that
attempt to minimize the order's WIP time. Once finalized. these decisions are added to the existing

shop schedule and serve to further constrain any subseguent scheculing that is required.

SA variety of alternatives exist for each type of operator. Far examipte, two spaerators have been tested tor choosing the

execulion time of an operation (3ee Section 36) The “eager reserver’ operator chocses the earliest passio @ resenation for
the operation’s required resourcns, and the “wait and see”™ operator tentatively reserves as much time 3s avanitle, 'eaving the

final decision 1o the resource assignment level of analysis
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3.4.3. Deviating from the High Level Plan

This top down approach to generating an order's schedule constitutes the system's default order
schaduling plan. The ISIS searci: architecture provides a framework for deviating from this plan in
problematic situations by associating pre-scarch and post-search analysis phases with each level of
the search. Post-search analysis is concerned with detection of unacceptable search results (i.e.
pocrly satisfied constraints) and identification of prior decisions that are likely to have zaused the
problem. If problems are encountered, the diagnosis identifies the appropriate level at which to
redirect the search. Pre-search analysis responds to diagnosed problems by altering the set of
assumptions under which the targeted level of the search will proceed (i.e. relaxing specitic
constraints that would otherwise be considered non-negotiable). In practice, these aspects ofbthe ISIS
search architecture have not been extensively explored. This has been due primarily to dlfhcumes in
mapping appropriate prescriptive actions into the specific levels of analysis conducted by ISIS. More
generally, it has been recognized that the system architecture’'s commitment to an order;based
scheduling perspective confounds reaction to many types of problems. The OPIS. écheduling
architecture (see Section 4) alleviates this problem and provides a more appropriate f'ramewori_<_'for..

reactive contral. .

3.4.4. Dealing with Shop Flecor Plan Daviations i

A rudimentary facility was provided for handling problems on the shop floor which forced deviations
from plan, (e.g., machine breakdowns). Since a schedule is viewed as a set of constraints on the
availatility of resources, deviations were viewed as constraint violations. Our approach implemented
a policy that the repaired schedule deviate as little as possible from the original in order to reduce
shop instability. This was accomplished by turning the original scheduie's resource reservation

constraints into preference constraints, to be used in the rescheduling of the atfected orders.

3.5. Interaction with the User

The ISIS user interface is viewed as a medium for communicating constraints to the system. The
user specifies what the constraints are, and the schedules produced are responsive to these
concerns. To facilitate acquisition and refinement of this constraint knowledge, a number of high
level interfaces are provided. Tha constraint editor is used to formulate preference constraints. Driven
by knowledge of the underlying constraint representation, it provides guidance to the user in
specifying or revising the necessary infcrmation relating to relevance, importance, and partial
satisfaction. Once specified, a new constraint is automatically integrated into the existing knowledge
base. Similar editors are provided to facilitate changes to other aspects of the factory model. A

status update interface is used to communicatz new scheduling restrictions that result trom factory

operation,
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The interactive scheduling subsystem provides a graphical interface through which the user can
manually perform some portion of the scheduling task. The user may el2c¢ct to make spec:fic
scheaduling decisions prior to involving the automatic sch=duler (2 g manuaily achedule acnitical area
of the plant), or manually acjust the automatically generated schecule after the fact. Scheduling
decisions imposed by the user are treated as additional constraints during subsaguent automatic

scheduling.

As individual scheduling decisions are made by the user, the system uses its constraint knowledge
in an advisory capacity. Relevant scheduling restrictions are checxked for constraint violations (e.g.
the operation being scheduled cannct be performed on the machine indicated), and, if any are found,
feasible alternatives are suggested. |If a proposed scheduling decision is found to satisfy all
scheduling restrictions, the decision is evaluated with respect to relevant preferential concerns.
Once again, constraints are collected and applied in the manner described in Section 3.3.1, and the
satisfaction estimates returned are used to provide the user with an indication of the desirability of the
decision. A sample commentary is shown in Figure 3.7. In this case, five distinct preference
constraints were found to be relevant to the decision in question. The partitioning of these
considerations reflects the particular scheduling policy associated with the order being scheduled.
These assescments make the user aware of all constraints that the syst2m knows to be relevant to
specific scheduling dzacisions. In doing so, they also provide a context for identifying constraints that

are incorrectly specified or currently unknown to ISIS.

3.6. Experimental Results

As indicated at the outset of this report, the work on ISIS was carried out in the context of the
Westinghouse Turbine Components Plant (WTCP) in Winston-Salem, NC. The WTCP scheduling
problem addressed during the 1SIS development effort was restricted to the portion of the plant
responsible for the production of steam turbine blades. which constituted approximatcly one third of
the total shop floor area. A turbine biade is a complex three dimensional object produced by a
sequence of forging, milling and grinding operations to tolerances of a thousandth of an inch.
Thousands of different blade styles are produced in the plant. primarily in batches of 1 10 200 blades.
Crcers released to the floor fall into distinct priority classes which range from replacemant orders for
malfunctioning blades in currently operating turbines, to blade orders that accompany orders for new
turbines, to orders for blades to be placed in stock for future use. There are typically 120 to 2CQ tlade

orders on the shop floor at any time.

Each style of turbine blade produced in the plant has one or more possible process routings

associated with it, each ranging in length from 10 to 15 operations. Distinctions betwaen alternative
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& 5 Decision being contemplated:
K order: mo-00039 operation: 0p.4-CSE1
\:_‘;-’ resource: r208-5 start-time: Wed Apr 10 1985
,_::{ end time: Fri Apr 12 1985
RS
§ A
)
ey Primary considerations {importance >= 30%}:
:j.': Sufficient lead time exists to complete preceding operations on order
x} mo-00039 if started by the requested start date of Tue Apr 2, 1985.
s,
o2l Due date constraint sufficiently satisfied. Order mo-00038 should finish early
- by 4 day[s] 4 hour(s].
::::: Secondary considerations {Importance < 30%}:
:’ r208-5 was a preferred choice because number-of-lugs of product was
! " satisfied. '
- L4 . . N .
) The preceding order on r208-5 is not of the same airfoil-type. No
el sequencing advantage taken,
.i’.
e
A The following orcer on r208-5 is of the same airfoil-type. Good sequencing
decision.
> Figure 3-7: Evaluating a Scheduling Decision
routings may be as simple as substituting a different machine, or as complex as changing the
3 manufacturing process. In-process orders in the shop must share the usa of approximately S0
. )
R machines and human manned work centers, as well as a full array of supporting resources (e.g.
2
operators, toaling, nc tapes, box gauges, etc.). Shop floor scheduling at WTCP is a formidable task,
Y ; and decisions are influenced by the full range of concerns outlined in Section 2.
oY - .
;,.:'- Experiments have been conducted relative to the WTCP scheduling problem with several versions
";:f_'f of the ISIS scheduling system. In each experiment, an empty jeb shop was loaded with a
.-"‘; representative set of 85 blade orders spanning a period of two years. The various types of constraint
L7 knowledge influencing the development of schedules in these experiments included:
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AN e aiternative operations,
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e e aiternative machines,
I o due dates,
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_:-‘.: e work in process restrictions,
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:'D ’ e sequencing constraints to reduce setup time,
el

et . R .

':Q‘:: i e machine constraints on product form and length,
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b e resource availability, and

(% e shop stability (minimizing pre-emption).
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; .r:;:.. A total of 13 experiments were performed. These experiments have explored the effects of | ]

3 h . N

. alternative constraints, alternative search operators, and the utmty of the hnerarchlcal search o

* architecture. In thns section we will examine the results obtained in two selected experlments. whléh :
.

::,.: serve to underscore the advantages of the hierarchical search archltecture A detanled dlscussion of. -
_.:: all experiments may be found in [Fox 83al. co s ST e
g - - .

> ' i

I . - .

. To provigde a benchmark for comparison, the initial version of 1SIS tested was non-hierarchical,

¥, A .

"-c} employing only the detailed (beam search) level of scheduling. Assignment of reservation times in thig

RS . . . .

: A _ experiment was handled by the eager reserver. The gantt chart® shown in Figure 3-8 depicts the

:‘ J schedule that was generated by this version of the system. The schedule is a poor one; 65 of the 85

J orders scheduled were tardy. To compound the problem, order tardiness led to high work-in-process

150"

) ':.Q times (an average of 305.15 days) with an overall makespan7 of 857.4 days. The reason for these

" "

;t{? results stems from the inability of the beam search to anticipate the hottleneck in the "final

k ,,.-~.

f o straightening area" of the plant (the fts* machine on the gantt chart in Figure 3-8) during the early

3 stages of its search. Had the bottieneck operation been known in advance, orders could have been '
s- _'-. . : .

.-;_w. started closer to the time they were received by the plant and scheduled earlier through the

Ly
A% .

! :_tj: bottieneck operation.

O The version of ISIS producing the best results in these experiments was the hierarchical system

-

o

908 8

§! -.‘5,‘- Each row represants a machino, and each column a week. if a position in the gantt chart is empty, then the machine is idle

: for that week. If a position contains an "o", then it is utilized for less than 50% of of its capacity. If the position containsa “"@*",

then over 50% of its capacity 18 utilized. Machines that are encountered earlier in the process routings appear closer to the top
ot the chart,

)
b -
: _/-.3 7Makespan i3 the time taken to complete all orders,
Kl
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of the due date constraints. The average utility assigned by the due date constraint to lower priority
"service orders”, for example, almost doubled, rising from a value of 0.46 in the first experiment to a '
value of 0.80.3 The total number of tardy orders was reduced to 14. Moreover, a much lower average
work-in-process time of 186.73 days was achieved, resuiting in an overail makespan of 583.25 days.
In this case. inadegquate machine capacity in the “final straightening area” (fts®) appeared to be the

principal limitation affecting order tardiness.

4. Investigations with OPIS

As experience was accumulated with the ISIS scheduling architecture, weaknesses stemming from
its strict reliance on an order-based decomposition of the problem were perceived. It was recognized
that an a priori commitment to a single "scheduling perspective” introduced a bias with respect to the
typas of constraint conflicts that could be effectively resolved, in this case resultmg in poorr
satisfaction of constraints surrounding the allocation of specific resources (e.g. sequencmg
preferences to minimize machine setup changes) [Smith&Ow 85]. To effectively attend to the tull

Reasd .
range of constraints, it must be possible to selectively adopt different scheduling perspectwes.. R

More generally, these problems reflect a need to reason about constraints and congtraint rela;iatior.u
at higher levels, The research conductea with ISIS emphasized mechanisms for constraint-'directed:'-«-
reasoning at the "micro” (or individual decision) level (see Section 3.3). However, m‘any global ‘
search control decisions (such as those relating to how the problem should be decomposed) affect .
the system’s ability to satisty classes of constraints, and hence must be based on more "macro” level
analyses of the problem constraints; in particular an ability to recognize important constraint conflicts
(or types of conflicts) and direct problem solving activity accordingly is essential to effective use of
"micro" level constraint relaxation technigues. The CPIS scheduling system grew out of a
recognition of these problems, and the desire to investigate the potential benefits of a dynamic,

conflict-directed approach to problem decomposition.

In this section, we highlight the major ideas that have emerged from work with CPIS. In Section 4.1,
we consider the implications of different scheduiing perspectives with respect to constraint
satisfaction. An initial muiti-perspective scheduling system, termed OPIS 0, is presented in Section
4.2, and the results of a comparative analysis of multi-perspective and singie perspective scheduling
are summarized. In Section 4.3, a generalized framework tor conflict-directed problem decomposition

is described. Finally, in Section 4.4, the stock of scheduling methods currently implemented in OPIS,

F‘Thr:se vilues were oblained using an carlier vorsion of the constram! evaluahon scheme descnibed in Seclion 33 1 that
assumed a rating scale from 0 (totally unsatistied) to 2 (compietely satished).
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and the scheduling strategies they give nse to. are summarized. Various aspects of this work are
discussed in [Le'Pape&Smith 86. Ow 86, Ow&Smith 66a, OwdSmith 860, Cw&Smith 86¢c, Smith&Ow
85. Smith 86b, Smith 86a, Smith 8&c].
4.1. The Case for Multiple Scheduling Perspectives

As indicated above, different decompositions of a scheculing problem may be obtained by adopting
different scheduling perspectives. These perspectives provide high level alternatives that a

scheduling system might consider. In this section we discuss two such scheduling perspectives:

® a resource-based perspective, where the shop schedule is viewed as a ccllection of
resource schedules (i.e. work area and/or machine schedules), and decomposition of the
scheduling problem centers around the development of schedules for individual
resources, and

e an order-based perspective, where the shop schedule is viewed as a collection of order
schedules, and decomposition of the scheduling problem centers around the
development of schedules for individual orders. . N

Each of these scheduling perspectives advocates a specific local and incomplete view of the overail
scheduling problem in terms of more tractable subproblems. As such, a decision to employ any oﬁé
perspective has its advantages and disadvantages with respect to the solution constfaints that have
been imposed, and neither perspective dominates the other. In order to determine where each
perspective can be most effectively used, and, hence prcvide a basis for selective use of both, it is |
necessary to understand the implications of each decomposition perscective so as to identify its
strengths and weaknesses.

An order-based perspective is the one adopted within ISIS. At each step of the generation of a shop
schedule, a specific order is selected and a schedule is developed for it, taking into account only the
resource allocation decisions that have been made with respect to previously scheduled orders. The
implicit assumption here is that the decisions to be taken for orders that are still unscheduled are less
important (i.e. it is possible to accept a lower level of constraint satisfaction for them without
significantly disturbing the quality of the overall schedule). A decomposition based on this
perspective resuits in subproblems that group together the constraints surrounding a particular order
to be scheduled, and thus provides an opportunity for effectively resolving order-centered constraint
~onflicts. These conflicts involve only the constraints associated with a particular order, and
information about other orders is not required to reason about them. An order-centered constraint

conflict might, for example, involve an order's operation precedence constraints and s cue date
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constraint®. Alternatively a canflict might exist between a work-in-process constraint that tries to limit
the length of time an order remains in the shop, and a constraint that expresses a preference for
particular resources to be used for an operation. An order based decomposition allows tha direct
exploration of alternative decisions so as to determine the best compromises amongst conflicting

order centered constraints.

Crder-centered conflicts may be contrasted with resource-centered constraint conflicts, which arise
from the need to share resources, and involve constraints associated with several arders. Limited
capacity in the shop often resuits in competition between orders for certain resources over some
period of time. Competition for a resource is typically driven by time constraints piaced on the use of
the resource, e.g. a constraint that an operation must finish by a certain time to avoid penalties Yet,
such competition can often be lessened (or completely resolved) if proper attentlon is gwen to
resource-centered constraints. For example, by properly exploiting order sequencmg preferences to
minimize the amount of setup time at a particular resource, it might be possible to pr_ocess all orders
that require the resource within the time consffaint.s im;;osed. It is evident that an order-tga_.sed
decomposition is inappropriate for handling such conflicts as it disperses the constraints involved in
resource-centered conflicts across a number of subproblems. Given an order-based decbmpoeition. ‘
the extent of a resource-centered conflict can only .be partially determined by evaluating how the
constraints associated with the current order are affected by previously scheduled orders. The
constraints associated with orders that have yet to be scheduled are not available for consideration.
Similarly, exploration of alternative ways of resolving conflicts is limited to the alternative ways that
the current order can be scheduled in the context of the partially developed shop schedule. Possible

synergies with the scheduling that remains to be done must be completely overlooked.

A problem deccmposition based on a resource-based perspective, alternatively, provides a direct
means for addressing resource-centered conflicts. In this case, the constraints surrounding the use
of particular resources are grouped together in the subproblems that result from the problem
decomposition. These constrants cut across all orders that may require the resources. Such a
perspective promotes both the detection of resource-centered conflicts and the evaluation of the
extent of such conflicts, since information about the relevant constraints of all orders involved is
available. Furthermore, since the scheduling decisions concern more than one order, there is greater
Hlex:bility in exploring aiternative ways for resolving these conflicts. It is possible to consider ditferent

sequences of orders, for example. based on the sequencing preferences that are present.

gc g il there kad nat heen a precedence constraant on operations, it mMmight have been possible to periorm certan operations
n parallel so that an order may compliete on me
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Nonetheless, just as the disadvantages of an order-based decomposition arose from its resulting
grouping of constraints, so do the disadvantages of a resource-based decompaosition. In this case the
. - grouping of constraints makes detection, evaluation and resolution of order-centered conflicts

J difficult because the conflicting constraints are now dispersed across all resource-based
subproblems.

‘. Given the characteristics of each scheduling perspective, the control decision becomes one of how
::.::': to partition the overall scheduling effort between perspectives such that the most important constraint
::ZE: conflicts can be directly addressed. One reasonable heuristic suggests that the most important
:-}' resource-centered conflicts are likely to accur at those resources for which competition between
orders is the greatest, i.e. scarce resources. These are more farhiliar|y known as the bottleneck
'_':}j' resources. Use of this heuristic results in a division of effort wherein a resource-based approach is
used to schedule bottleneck resources and an order-based approach is used to schedule operatidns
._\1 using non-bottleneck resources. : -

4.2. An lnitial Multi-Perspective Scheduling System ]
f." To provide experimental justification for the claims put fcrth above regarding the use of r.nultiple' )
" scheduli'ng perspectives, an initial multi-perspective scheduling system was configured. A resource
. scheduling strategy based on the selective use of a set of dispatch scheduling heuristics was
implemented, and the scheduling strategy of I1SIS was adapted for use as the order scheduler. To
' simplify issues of coordination, the following, tightly controiled pattern of interaction between these
‘o two scheduling perspectives was imposed:

e The resource scheduter was first applied ta a single, pre-specified bottleneck resource (a

j-_ work area of the plant consisting of some number of machines).

:::E' e The order scheduler was then applied to work outward from this established portion of

‘\\.- the shop schedule to complete the schedules for each individual order.

!4 The performance of this system, designated OPIS 0, was then contrasted with that of ISIS and a
.::_".' dispatch system using the COVERT priority rule for minimizing tardiness cost (as formulated in
—_:'.'j:' [Vepsaleinen 84]). The latter system represents a well known and well regarded approach to job shop
;:Ej; scheduling, and was included to provide a benchmark for the experimental study. We first discuss the
".;- approach tn resource scheduling that was implemented. Next, the results cbtained in the comparative
_':_'Ef:j analysis are summarized. Finally, the limitations of CPIS O implementation are identified. Further
'.” details of CPIS 0, and the design princigies that guided its development, are contained in [Ow&Smith
.,-/ 86a, Ow&Smith 8€b, Ow&Smith 86¢, Smith 86b]. A complete account of the expenments may be
_._.... found in [Ow 86].
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4.2.1. Constructing Resource Schedules

The resource scheduling problem cancerns the allocation of time on a designated resource to a set
ot competing operations nvolving different orders. In some cases, the designated resource is a
single machine and the problem is solely one assigning execution times to the operations requiring
the machine. More typically, however, the resource is a work area consisting of a set of machines, in
which case the problem additionally involves an assignment of operations to specific machiﬁes. Quite
often a given operation can only be performed on a subset of the machines that are contained ir; the

area (i.e. machinesin a given work area are functionally similar. but not necessarily identicai).

There is an important observation concerning tha role of resource scheduling in the context of

generating a shop schedule that bears directly on the approach taken to resource scheduling.” A

global decision to solve a particular resource scheduling problem (as defined above) |mphes that ) :

contention for the designated resource is the crux of the problem (e.g. the resource appears to be a

bottleneck). If contention wasn't a major problem, then there would be no resource schedullng '..;.. B

rv—\

problem and the global strategy would focus attention toward other, more crmcal schedullng

-.t"

decisions. Given this fact, assumpticns can be made that iimit the number of al'ernatlves that must be

PR
oapm

considered during resource scheduling; in particular, we can safely assume that there is no need to

consider the introcduction of slack time between operations. This reduction in scope transforms the
resource scheduling problem into a "dispatching” problem, and suggests an overall strategy for
developing resource schedules. Scheduling decisions can be generated in an event-based fashion,
with the scheduler repeatedly determining which operation to "dispatch” next to each machine in the

work area under consideration.

Cf course, the real issue of interest concerns how the dispatch decisions are to be made. The fieid
of Cperaticns Management (CM) has produced a large collection of dispatch scheduling heuristics.
But, as we have already mentioned in Section 2, these heuristics are typically designed with respect
to a particular objective (or set of objectives) and ignore all other relevant concerns. At the s-ameA time,
there is no reason why a dispatch strategy must rigidly rely on a single scheduling heuristic (despite
the fact that this is typically an assumption of OM research). If heuristics can be icentified that cover
the range of constraints that must be attended to. then knowledge of the importance relationships
among constraints can be used in conjunction with knowledge of the current state of the solution to

determine which heuristic to apply at any point.

The CPIS 0 resource scheduler is based on the above ideas. Resource schedules are developed in
an rterative, event-based manner, with one or more scheduling decisions made on each iteration. The

resource scheduling cycle 1s decomposed into three distinct phases which are carried out in
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succession. A resource assignment phase is entered first, during which assignments of operations to
machines are made. Next, a sequence development phase is entered to select a particular subset of
assigned operations (at most one for each machine) tc be scheduled on the current cycle. Finally, a
resource allccation phase is entered wherein the selected operations are committed to. Cn any given
cycle, the scheduler’'s attention is restricted to a subset of the most urgent operations that remain to

be scheduled. This procedure for resource scheduling is made more precise in Figure 4-1,

1. [Inttialization] - All unscheduled operations are sorted in increasing order of associated
order due dates and tardy cost rates.

2. [Subproblem Selection] - If the sorted operation list is not empty, the first g operations (all
if less than g in list) are selected to form the active operation set, Q. (Otherwise, stop.)

3. [Resource Assignment] - Each operation in Q is assigned to a specific machine in the
designated bottieneck work-area. If the designated resource is a single machine, then
this step is unnecessary.

4. [Subproblem Selection] - The set of machines to be scheduled on this iteration is
determinad. Only machines with oparations assigned will be scheduled. Furthermore, if
two assigned machines are substilutable for some operations in Q, only the one that is
free carli st will be considered schedulable. Let the schedulable machines form the set
M.

(&)}

. [Sequence Development] - For each m in M, the next operation to be scheduled on m is
selected.

6. [Resource Allocation] - Reservations are made for the selected operations on the

machine to which they have been assigned, and the selected operations are removed
from the sor.ed operation tist. (Go to step 2.)

Figure 4-1: The Resource Scheduling Cycle

Both the resource assignment and sequence davelopment phases of the resource scheduling cycle
make use of alternative scheduling heuristics. During resource assignment, the choice of heuristic is
based on order slack. which is defined to be the time between the order's due date and its estimated
completion time if it's operation i1s scheduled next (taking into account the earliest time that the order
can arrive at the work area being scheduled). If the slack is long, e.g. 5 times the average processing
time of the operation, then the heuristic applied is one that attempte to assign the operation (0 a
machine with the proper setup. That is, tardiness is not expected to be a major prablem and therefore

the objective emphasized is setup minimization. Otherwise, a heuristic is applied that selects the
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machine that results :n the earliest complction time (emphasizing the tardiness <cst minumizaticn

obiective).

With respect to sequence development, tha simple Earliest Due Date (E2CC) rule worss aed wien
the proportion of tardy orders (or tardiness factor) is very low over a sequence of about 2T ;cts. while
the more complex Idle Time Rule [Ow 85] works well for higher tardiness factcrs. Therefere, the the
Idle Time Rule is applied when the slack on orders are relatively short or negative. If the slack
appears to be very long, either the EDD rule or a rule which attempts to select an cperaticn that cces
not require any machine setup is applied. In our experiments, we have observed orders with shorter
slack being scheduled early on in the resource scheduling process using the Idle Time Rule. Towards
the later stages of the process, orders with longer lead times remain and these are scheduled using

EDD or by product type to minimize setups.

4.2.2. A Comparative Analysis of Multi-Perspective and Single Perspective Scheduling

A scaled down model of the Winston Salem job shop was used to provide an environment for the
experimental study. Six product types were included in the madel, with associated process plans that
utilized over 30 machines. Machines were functionally grouped into 11 work areas. The bottleneck
area contained 7 machines. The orders to be scheduled were known in advance, and pre-determined
due dates and tardy cost rates were used. For purposes of cemparison, the schedules generated by
each system ware evaluatad with respect to tardiness costs, work-in-process time, and the number of

machire setups.

The comparative analysis was carried out over a total of 22 test problems. 20 of these test problems
required 120 orders to be scheduled and the remaining 2 involved only 85 orders. Individual
problems were generated by manipulating 4 parameters - the pattern of order releases (daily, weekly,
exponentially rates), the number of orders released in each batch of releases, the product mix, and
the satting of due dates. The set of problems was grouped into 18 categories, representing different

shop conditions and load factors ranging from 70% to 120% of the capacity of the bottteneck area.

Figures 4-2 and 4-3 summarize the performance of each system with respect to tardiness cost and
work-in-process time respectively. On each account, OPIS 0 was seen to outperform both SIS and
COVERT. Cnly four test problems were solved using ISIS largely because of the length of time taken
to complete each ‘ask. Furthermore, it became clear from a detailed analysis of the ISIS schedules
that the shortcomings predicted in using a purely order-based perspective were experienced. ISIS
performed well with respect to minimizing work-in-process time as this depends primarily on an ability

to resolve order-based conflicts. Hcwever, its performance with respect to tardiness cost suffered
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because of it inability to effectively handle resource-based conflicts. This fact is underscored by
examining the n_umber of setup changes in the schedules produced by OP!S O and ISIS (see Figure
4.4). The ISIS schedules contained close to twice as many setup changes for bettieneck machines as
did the schedules generated by CPIS 0. The time required to perform these setup changes appeared
to account for much of the discrepancy in tardiness cost performance. The variances in average
tardy costs were also smaller for OPIS 0 than for ISIS and COVERT. Work-in-process time variances
for OPIS 0 and ISIS were between 4 and 9 days while COVERT's ranged from 14 to 225 days because
of the strictly local nature of the dispatch-based decision making. '

4.2. 3 Limitations of the initial System Configuration

In implementing the OPIS 0 scheduler some rather severe limitations with respect to system _

flexibility were imposed. These limitations were felt to be ;ustrfred as our pnmary mtent ln
constructing the system was to implement a particular multi-perspective schedulmg strategy and

provide some experimental evidence of the advantages of multi-perspective schedulmg' ln thls

section we examine the limitations of this umplementatron This will serve to motrvate the current OPIS -7
ol

schedulmg archntecture. which is described in Section 4.3. o LT <

- et
-

-

A rather obvious restriction in OPIS 0 is its reliance on a static decompasition of the schedulihé T

problem. A single pre-specified bottleneck resource is used to drive a fixed highAlevel strategy‘ for

partitioning effort between the two scheduling perspectives. in an actual workshop, the situation is
often much more complex. Several bottleneck rescurces may exist, either independently of one
another or in a specific primary botlleneck/secondary bottlenack relationship. Furthermore, the
bottleneck resource in the shop often "floats" over time, in which case specific resources need not
be considered critical for the entire duration of the schedule. A priori specification of these more
complex resource requirements is unreasonable, as many of the specific relationships emerge only
during the scheduling activity (i.e. once some number of scheduling decisions have been made). An
ability to dynamically predict "high contention" areas of the shop scheduie is necessary ic fully

exploit the resource based scheduling perspective.

A secone limitation of OPIS 0 concerns its strict assumption that the resource-based subproblem at
the bottleneck resource completely dominates the order-based subproblems that involve non-
bottleneck operations. The bottlenack schedule that is generated by the resource scheduler is
guaranteed to be feasible (i.e. at least one conflict-free shop schedule is realizable), and the order
scheduler is obliged to generate scheduling decisions that are consistent with the bottleneck
schedule. This guarantee of feasibility is accomplished within the resource scheduler by actually

building and maintaining a tentative (albeit simple) schedule for all resources required to perform

._,_._
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_\:-‘:- operations that ml:lSt proceed the bottieneck operations. These tentative schedules are discarded

o once the bottleneck resource schedules have been finalized. There are two reasons why this is
! undesirable. Fir;tv. the guarantee of feasibility is not exacted withcut the computational expense

't__.: associated with _q;enerating the tentative schedules. Mare importantly, however, important concerns

are likely to arise in subsequent subproblems which should force reconsideration of the existing |
..:::-j i bottleneck schedule (and subsequent compromise). The subproblem dominance assumptions made

) in OPIS 0 preclude this possibility.
Pl

_'\-:;:: A final limitation of OPIS Q, pcerhaps a more general statement of the limitation just described, is that

\' ] it implements a schedule generation strategy and, as such, is insensitive to the dynamics of the shop

' floor. Unanticipated events (e.g. machine breakdowns, power failures) are typically commonplace on -

NN ’ the shop floor, and continually introduce conflicts into the current shop schedule. _‘-Shqrt of — kS
:. fegeﬁerafiﬂg the entire shop schedule (which is obviously not often the desirabié codrée of actibn), )

,-::; OPIS 0 has no capabilities for reacting to such events. At the same time, however, the attractlveness ,f.

® '; of muitiple scheduhng perspectives in responding to unanticipated events is fairly clear There are .

.-'_:.- . some events that suggest a resource-centered perspective (e.g. a machme breakdown) wh:le there .-
are cthers that are more effectively addressed frcm an order-based perspective (e. g a request for ' ;
.'.:_:'Z.j rework with respect to an in-process order). - ]

.' J
":'.":' 4.3. A Scheduling Framework for Conftict-Directed Contrdl )

-._t:." The limitations of OPIS 0O raised in the previous section all center around the need for greater

system flexibility in approaching various scheduting tasks. In short, more dynamic and opportunistic
/ Y control of problem decomposition and problem solving is required to fully address the scheduling
requirements of actual factory envirocnments. At the same time, OPIS 0 demonstrates the utility of a
conflict-directed approach to structuring the search for a good schedule. In this case, a static
assumption is made that the most critical constraint conflicts are those related to ailocation of a .

prespecified bottleneck resource, and scheduling etfort is focused there first. The OPIS 1 scheduling

o system (here after referred to simply as OPIS) generalizes from this example, defining a basic
. -.: ; framework for ‘conflict-directed control and using this framework to extend the OPIS O scheduling
‘, capabilities. In this section we focus on the OPIS control framework. The scheduling strategies
‘ currently implemented within this framework and the scheduling methods that these strategies rely
:;_: on, are summarized in Section 4.4. The reader is referred to [Smith 86c] for further details.

o

::;'_“_‘ A loosening of the reins on opportunistic problem decompaosition and schedule generation -

T

introduces considerable adaitional complexity into the problem solving process. One must give up the

assumption that individual subproblem results (or solution components) will be compatible and admit
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the possibility that important local concerns will surface during the generation of specific solution
components that lead to constraint violations when integrated with previcusly generated solution
components. Thus. in addition to determining how the problem should be decomposed and in which
order various components of the schedule should be generated, the scheduler must be capable of
monitoring progress made toward a final schedule, recognizing and characierizing conflicts in the
schedule as they arise, and using these characterizations to initiate appropriate schedule revision
activities. ' Note, however, that these capabilities also provide the necessary machinery for
responding to unanticipated external events. This process differs only in the fact conflicts are
introduced into the predictive schedule through indications that the status of the factory has
changed. The OPIS control architecture described below provides these capabilities, and, in doing
s0, provides a framework that merges the activities of predictive schédule generation/expansion and :
reactive schedule maintenance. ‘ :

4.3.1. Overview ) _ . ‘ .

Figure 4-5 depicts the top level structure of OPIS, and identifies thermajor .components oi‘,the
current system architecture. The organization is a vaiiation of the HEARSAY-II blackboard éty|e
architecture [Erman 80], and similarly assumes 2 system organization comprised of a numbei: oi‘
knowledge sources (KSs) that extend and revise a global set of one or more hypotheses. In this case,
the KSs,ir.nplement alternative scheduling met-hods and the hypotheses being manipulated are
candidate shop schedules. For simplicity in the following discussion we will assume that only a singie

shop schedule is being manipulated.”

Within this architecture, a designated KS called the manager assumes responsibility for planning
and coordinating the scheduling effort. Scheduling proceeds via the formulation and initiation of
scheduling tasks. Each scheduling task requests a particular analysis, extension or revision reiative to
the current shob schedulé (e.g. generate a schedule for work area wa-1, revise the schedule for order

ord-1, analyze the capacity of the shop), and designates a specific scheduling KS to carry out the

1OGiwen the granularity of the solution components that are being synthesized (e.g. a schedule for a specific work area) and
the nigh degree of interdependency among the decisions that comprise these solution components {due to the temporal and
resource constraints on the probiem), systematic backtracking procedures are of little use in resolving contlicts. The system's
approach to revision must be driven by characteristics of the conflict {(or conflicts) at hand.

11Nole that this does not mean that there is no search taking place; but rather that exploration of alternative scheduiing
decisians is confined to the local subproblems addressed by individual KSs. For example, in constructing a given orcer's
schedule the order scheduler will conduct a search before committing to a particular set of scheduling decrsions. Once this
commitment has been made, however, it becomes part of a single evolving shop schedule. This "single shop schedule™
assumption is necessary in the context of schedule generation to keep the problem computationally tractable. Recall trom
Section 3.4 that this assumption was built inta the ISIS search architecture. The provision tor mantaining muitiple shop
schedules is included in the OPIS architecture primanly for reacting to externai events. Here, the problem is smaller in scope.
and it is quite feasible to consider alternative schedule revision strategies.
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Figure 4-5: Current OPIS Architecture: Top Level
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task. The manager's queue of pending subtasks constitutes its current plan for solving the scheduling

problem at hand. The execution of a scheduling tasks by scheduling KSs yields changes to current

shop schedule.

These changes are integrated into the current hypothesis by the schedule

'_ management subsystem, which exploits the temporal restrictions and capacity limitations specified in

the factory model to determine the additional constraints imposed on the schedule by each new
" scheduling decision. This provides an accurate characterization of the current state of the evolving

' _. solution and a straightforward basis for detecting conflicts. The manager is informed of the results of
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KS execution through the posting of control events, which summarize those aspects of KS execution
that are of importance from a control perspective. Events may highlight important characteristics of
the current solution constraints (e.g. resaurce contention is iikely to be high at a particular resource),
indicate that progress has been made toward a final solution (e.g. another component of the shop
schedule has been generated), or identity specific problems that are present the solution (e‘g.'
constraint violations). The manager responds to posted events through application of a set of event
processing heuristics. This results in the formulation of new scheduling tasks, and the queue of
pending subtasks is updated accordingly. Thus, the manager implements an event.driven control

regime, continually revising its “scheduling plan" as the results of KS execution become known.

-

At the core of this framework for control are two key notions; . LT -

1. The use of a centralized schedule management component as a means o! =
communicating constraints among subproblems and recognizing constraint vxolatlons, ::
and e

2. An event-based framework for representing and structuring search control knowledgse.

These two notions are elatorated in the following subsections. - ~ o

4.3.2. Schedule Management _ - ::' ;"""

The OPIS scheduling architecture makes no commitment as to the order in which individual
scheduling decisions will be made. Rather, the architecture assumes that characteristics of the
problem at hand, in particular analyses of the constraint conflicts that must be resolved, will be used
to dynamically pricritize the scheduiing decisions that have 1o be made. Thus, for example, schedule
generation might proceed by constructing schedules for resources where contention is likely to be
high and then considering the scheduling decisions that involve the allocation of less critical
resources. Similarly, indication that a machine will be down for the next week might lead to some
amount of rescheduling in the work area containing the failed machine, followed by revision of any
scheduling decisions in other parts of the schedule that are aifected by this rescheduling. Essential to
this opportunistic approach to scheduling is an ability to maintain an accurate characterization of the
current state of the schedule. Both problem decomposition (the formulation of appropriate
scheduling tasks) and subproblem solution (the application of specific scheduling KSs) requirs
knowledge of the constraints that are currently imposed on the schedule (both by the current factory
state and the scheduling decisions that have already been made).

This support is provided within OPIS by incrementally maintaining an explicit representation of (1)
the current temporal constraints on each manufacturing operation that must be scheduled, and (2)

the current availability of each resource. Thus, an operation description delineates, at any paint, the
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set of allocation decisions that are compatible with the constraints imposed by the external world and
any other scheduling decisions that have already been made. This is illustrated by the partiat
description in Figure 4.6, which states that operation ord2-P1-root-grinding must be scheduled in
the 208-rooting-area sometime between 10:20 and 17:00 on August 18th to remain consistent w.th
the current solution. In this case, the end time constraint is a consequence of the scheduling
decision that was made concerning the downstream gperation ord2-P1-milling-operation, and the
start time constraint is a consequence of both the order's release date and unavailability of the 208
rooting machines (perhaps due to ther prior allocation to other operations) Descriptions of resource
availability, which are associated with the resources themselves, characterize intervals of time during
which the resource may still be aliocated and how much available capacity remains (in the case of
aggregate resources). These representations of current time and capacity constraints are maintained

at different levels of aggregation to enable scheduling at various leveis of precision.

{{ord2-P1-root-grinding
{INSTANCE: P1-root-grinding-operation
ORDER: order2
RESOURCE-REQUIREMENTS: 208-rooting-area
NEXT-OPERATION: 0rd2-P1-milling-operation
STATUS: unscheduled
TIME-BOUND-INTERVAL: {{INSTANCE: calendar-time-interval
START.TiME: Aug 18 10:30
orig:ns: (order-release-date order2)
(capac:ty-restriction 208-rooting-area)
END-TIME: Aug 18 17.00
origins: (scheduled-start-time ord2-P1-milling-operation)

N

Figure 4-6: An unscheduled operaticn with time bound constraints

These constraint representations are maintained ty a set of propagation processes collectively
referred to as the schedule management subsystem. The propagation processes are driven by the
temporal restrictions (e.g. operation precedences. operation durations) and resource requirements
specified in the factory model, and are triggered whenever changes to the schedule are made. When
operations are scheduled, for example, their descriptions are updaied to reflect the chosen resources
and intervals of execution, and constraints are propagated to both related operations and the
resources that have been allocated. Changes to the schedule may be more complex than the addition

or retraction of individual scheduling decisions. For example, indication that an order must be
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reworked requires the addition of the necessary rework operations to the production plan before time
bound propagation can te carried out. Specthic "schedule update” processes are defined for each

type of change to the schedule that might be encountered.

As mentioned previously, this explicit representation of the current state of the schedule serves two
purposes within the CPIS scheduling architecture. The first is one of constraint communication,
making all current constraints apparent to scheduling KSs during generation or revision of specific
components of the overall schedule. The secend is in providing a basis for detecting problems in the
schedule. The representation we have described enables straightforward detection of three basic
types of constraint conflicts: nme conflicts (corresponding to precedence violations) capacity
conflicts (corresponding to rescurce availability violations), and time vs capacity conflicts
(corresponding to situations where scheduling decisions do not exist that mutually satisfy current
temporal restrictions and resource availability constraints). In OPIS, detection of these types of
conflicts is coupled with the constraint propagation processes, and each conflict detected is posted '
with the manager (see below). Complete details of the constraint propagation processes and the
detection of conflicts may be found in [LePape&Smith 86].

4.3.3.Event-Based Control

The OPIS manager formuiates, extends, and revises its current scheduling plan (i.e. its queue of
pending subtasks) in response to posted control events. Control events represent those
consequences of internally initiated scheduling actions (i.e. KS execution) and externally initiated
schedule updates that are relevant to control decisions. They are generated and posted as a result of
gither activity. Events provide an abstract view of the current state of the schedule, and contain ali
the information necessary for the manager to determine how to proceed. Events also provide a means
for organizing the system's control knowledge. Event processing heuristics, which map occurrences
of particular events to appropriate sequences of scheduling tasks, and knowledge relating to event
importance, which is used in ordering the queue of pending subtasks, are directly attached to the
prototype description of each event type and therefore directly accessible to the manager in

responding to specific events. These ideas are illustrated in Figure 4.7.

The set of control events defined within the OPIS architecture are categorized into three general
classes:

e contlicts - Conllict events are used to characterize inconsistent sets of scheduiing
decisions that have been detected in the schedule. Such events involve the violation of
non-negotiable constraints and are precisely those that are detectable by the schedule
management subsystem. Reaction in this case is mandatory as the current schedule is
infeasible.
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N {{precedence-violation
{1s-A: elementary-contlict
o CONFLICTING-COMMITMENTS:
N HYPOTHESIS!
b ' MAGNITUDE:

iy INTRODUCED-BY:
: . EVENT-TYPE-IMPORTANCE: 4
" EVENT-PROCESSING-HEURISTICS: pv-heur1 pv-heur2
s process-event: process-event
e ) _calculate-overall-significance: calc-pv-significance
K “verify-control-state: pv-state-check } }}

. i - Figure 4-7: The precedence-violation event prototype =~ :

e compromises - Compromise events are produced as the result of analysis tasks and D
concern the violation of preference constraints. Two event subtypes are dnstmgunshed A
here: unsatistactory compromises, which identify preference concerns that have been LT
unacceptably relaxed, and predicted compromises, which designate areas “in the "=
schedule where it appears that it will be necessary to compromise preferences.
Unsatisfactory compromise events may or may not be reacted to, depending on the
manager's perception of the opportunities for improvement. Predicted compromises -
provide a basis for prioritizing the set of scheduling decisions that must be made. - -

. ~.~,_' -

" p ] P
al i Slele, ." sl\.’.\n‘iﬁ;_‘f . 4
1

-

=
X : . hypothes:s -modifications - Hypothesis modification events simply indicate changes that
‘.;j have been made to the current schedule. They are posted as a result of either KS
-~ execution or factory status updates. in the former context, hypothesis moditication events

O

provide a basis for stringing together specific sets of subtask creation heuristics to
implement particular schedule development strategies.

w"\.
KN .
l" -
j',-.f “Upon initial invocation and at the end of each top-level problem solving step, the OPIS manager
\ -
f.f- responds to the currently posted set of events. This activity proceeds in two steps:
1. event aggregauon during which the most approprnate set of events to consuder is
e determmed and- ..
)
N
}: 2. event pfocessing, during which the manager's current scheduling plan is revised in
o response to this determined set of events.
During the event aggregation step, any "related” events among those that have been posted are
::. combined into aggregate events. Because of the fact that KS execution and external status updates
}'j may result in a considerable amount of change to the current solution (e.g. thq resource scheduler
- may make decisions for all orders that pass through a given work area), several constraint conflicts
;2 N can be introduced during a single top-level problem solving step. As we have seen, each conflict is
'.:. . .
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h - : detected an_d reported individually during constraint propagation. It is often the case that these
- elementary events are related in some manner (e.g. they involve different operations of the same
order, they'\invo‘h/e' different_ operations requiring the same resource, etc.), and would be better
addressed by the system simultaneously. Thus, the notion of an aggregate event is introduced, and
. ' .. aggregate event types are defined on the basis of such relationships. Event aggregation heuristics
; ~are assoc‘iated.with these descr_iptions to specify the precise circumstances under which two or more

- posted events should be transformed into an aggregate event of a given type.

During the event processing step, the event processing heuristics associated with each currently

- posted event (including any aggregate events generated during the event aggregation step) are
- " - applied to determine how the system should proceed These condition/action rules examine
B A ‘characteristics of the event bemg processed and spec:fy extensions and rewsmns to the ‘manager si;'_. -
;;_.'_ ~ 4» “ current queue of pending subtasks These changes involve some comblnatnon of the followmg
- " pnmmve actions: the creation of new subtasks to perform a reordering of exnstlng tasks ln the queue. -

- and the elimination of existing tasks Once all events have been processed the queue of pendmg-- ) _- ‘
’ subtasks is updated and the hi ghest priority pendmg subtask is mrtxated Subtask prlormzatlon is a -

- - functlon of the significance of the triggering event type (e.g. tasks resuiting from conflict events are

--generally consrdered more nmportant than those resulting from hypothesis modnﬁcatnon events).
" characteristics of the trlggermg event (e.g. the magnitude of the _conflict reported), and
characterlstlcs of the task ltself (e.g.its dependencnes with respect to other pending subtasks)

4 4. Scheduling Knowledge Sources )
Four scheduling KSs have been implemented within the archutectural framework descrlbed above.
* The order scheduler of OPIS O {essentially the detailed resource analysis and resource assignment
levels ot ISIS - see Section 3.4.2) has been revised to operate with the propagated time bound
constraints and provide the reactive capability described in Section 3.4.4. A schedule revision

capabnhty has also been added to the resource scheduler of OPIS 0. The strategy implemented

N,

. attempts to retract only as many schedulmg decisions as necessary to produce a new, conflict-free
schedule for the desngnated resource. Thisis accomphshed by assuming no schedule forward in time
from the point of the current problem (e.g. order contention due to insufficient capacity), and invoking
the schedule generation strategy (see Section 4.2.1). However, after each new set of allocation
decisions isv made (i.e. after each resource scheduling cycle), an analysis is performed to see if the
Ane’wschedule can be consistently synthesized with the fragment of the old schedule consisting of the
T .4 operations that have yet to be placed in the nevJ schedule. Thus, both detailed scheduler KSs may be

R .. - used in either a schedule generation/refinement or schedule revision mode.

‘.
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Two additional KSs have also been added. The first, referred to as the capacity analyzer'?
implements a "shop level” scheduling perspective. It provides a basis for dynamic problem
decomposition by generating predictions of likely areas of high resource contzntion. In contrast to

the detailed schedulers, the capacity analyzer operates with aggregate descriptions of resources,

* operations and resource allocation decisions. It constructs a predictive shop schedule that satisfies

the time bound constraints posted with each aggregated operation, using a general line balancing
heuristic. The demand for capacity reflected‘ by this schedule is then compared with the actual
capacity of the required aggregate resources and likely bottlenecks are predicted. The second KS
added to the configuration implements a simpte schedule-shifting strategy and is employed to resolve
minor inconsistencies that might arise.

The manager's current body of control heuristics generalizes the OPIS O schedule generation T

dynamically determined by the capacity analyzer). The schedule is then completed on an order by> :
order basis, and contingencies are included for revising decisions made by the resource scheduler in s
response to inconsistencies that arise later on in the search. Heuristics are also in place for reactlvely

revising the current schedule as status updates are received from the factory floor. These heuristics :

define strategies for responding to machine failures, operation delays, rework requests, and the
receipt of new orders. '

5. Conclusions
The work described in this report was undertaken with the hypothesis that the use of constraint
knowledge is centrai to obtaining a good solution to the job shop scheduling problem, and has sought
to develop a scheduling mefhodology that is driven by such knowledge. Several key elements of a
theory of constraint-directed job shop scheduling have emerged from this work:
e Analysis of specific job shop environments has resulted in ah identification and
categorization of the various types of constraints that influence scheduling decisions

(Section 2). This categorization broadly delineates the knowledge requirements of a
constraint-directed scheduling system.

e A representational framework for modeling all aspects of the manufacturing enterprise
has been developed (Section 3.1). The framework ascribes a semantics to general
concepts of activities, states, objects, causality, and time, which is then refined to provide
primitives for modeling the production environment and its constraints.

1“’Des(:aite the name, this KS bears no retationship to the capacity analysis level of the ISIS search architecture. In fact, the
ISIS capacity analysis level has been subsumed by the propagation technigues of the schedule managuement component and
removed from the order scheduler. :

strategy to one where effort is initially focused on scheduling any number of predicted bottlenecks (as' S
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e A constraint representation that extends predicate constraint specification techniques to
enable the expression of preference constraints has been designed (Section 3.2). This
defines the notion of relaxable constraints (i.e. constraints that may be satisfied to varying
degrees, depending on the specific situations of constraint conflict that arise during
scheduling). The representation makes alternative choices explicit, and formalizes the
knowledge necessary to intelligently reiax (or compromise) specific constraints in
conflicting situations.

e A methodology for constraint resolution (i.e. determination of precisely which constraints
are relevant to a given scheduling decision) has been developed, based on (1) model
semantics concerning placement of constraints in the modef (Section 3.3.1), and (2)
techniques for propagating those constraints that are created dynamically during
scheduling through the model (Section 4.3.2).

e A dynamic schedule evaluation scheme, based on knowledge defined in the constraint
representation and intuitively reflecting how well the set of scheduling decisions under
evaluation satisfies the relevant objectives and preferences, has been developed (Section -
3.3.1). This evaluation scheme is useful in two contexts: it provides a basis for comparing
alternative sets of scheduling decisions that are generated during the search for a good

schedule (Section 3.4.2), and it provides a means for assessing the quahty of user _"

imposed scheduling decisions (Section 3.5).

e Both generative and analytic techniques for intelligently compromising among conflicting
constraints have been developed (Sections 3.3.2, 4.1). Generative (or search-based)
relaxation utilizes the alternatives possible with respect to on2 constraint (e.g. the
resources capable of performing a given operation) to generate a set of alternative
decisions, each of which will variably relax other relevant constraints (e.g. due date
constraint, resource preferences). Analytic (or rule-based) relaxation exploits knowledge
relating to the importance of and interdependencies between various constraints to either
restrict or redirect the search to specific areas of the solution space. This focus results in
an emphasis on specific constraints and a de-emphasis on others.

e Both hierarchical and opportunistic search architectures have been investigated as
frameworks for controlling the combinatorics of the search for a good schedule.
Hierarchical techniques have been defined that enable a "staged" introduction of
constraints via multiple levels of analysis, where the results of each level provide insight
regarding the solution at lower levels (Secticn 3.4). Opportunistic technigues have been
defined that exploit knowledge about constraint conflicts to dynamically structure the
search (Section 4.3).

e Several approaches to integrating Operations Management (OM) methods within a
constraint-based scheduling framework have been demonstrated. Specific dispatch
heuristics can Je injected in the formulation of various due date constraints (Section 3.2).
Techniques for selectively applying different dispatch heunistics, based on characteristics
of the current state of the solution and the relationships among the constraints that are
emphasized by each heuristic, have alsoc been demonstrated (Section 4.2.1).

Several prototype scheduling systems based on these concepts and techniques have been

corstructed, and comparative analyses of the performance characteristics of these systems and a
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] well regarded traditional scheduling method have been conducted in the context of an actual
manufacturing facility (Sections 3.6, 4.2.2). The results obtained provide experimental evidence of

both the viabiiity and the potential of constraint-directed scheduling.

The results of this research by no means constitute a final solution to the job shop scheduling

problem. There are many difficult issues related to understanding the longer term implications of

short term reactive adjustments to the schedule, for example, that we have only just begun to
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address. At the same time, this research has introduced, for the first time, a scheduling methodology
that explicitly addresses the diversity of constraints that actually influence factory operation. While a
complete theory of constraint-directed scheduling has not yet been échieved (i.e. itis not yet possible
~j.": : to base a/l system decision-making on a declarative specification of constraint knowledge), concepts
and techniques have been demonstrated that offer opportunities- for substantial improvement In
factory performance. Furthermore, since the job shop scheduling problem has much in common With
other types of logistics support problems, we feel that the results of this research are applicable to a
much broader class of scheduling problems. '
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